EQUATIONS OF LINES IN SLOPE-Y-INTERCEPT FORM

Recall that in \mathbb{R}^2 , we can write the equation of a line in the form y = mx + b. This form is known as **slopey-intercept form**. AS we will see, it is very simple to switch between the vector form, parametric form and slope-y-intercept form for the equation of a line in \mathbb{R}^2 .

Part Two – Switching Between Forms

Using the connections made in Part One, rewrite the following equations of lines in the stated form.

	9) Write $y = \frac{7}{3}x + 9$ in vector form:
	10) Write $y = -6x - 5$ in parametric form:
	11) Write $\vec{r} = (-8, 15) + t(4, -7)$ in slope- <i>y</i> -intercept form:
	12) Write $\begin{array}{l} x = 5 - 3t \\ y = 2 + 11t \end{array}$ in slope-y-intercept form:
3	Part Three – Horizontal and Vertical Lines 13) Write $y = 6$ in vector and parametric form.
	Vector form: Parametric form:
	14) Write $x = -8$ in vector and parametric form.
	Vector form: Parametric form:
	15) Write $\vec{r} = (8, -1) + t(0, 2)$ in slope- <i>y</i> -intercept form:
	16) Write $\begin{array}{l} x = 9 - 5t \\ y = 7 \end{array}$ in slope-y-intercept form:
4	Part Four – Analysis 17) Are the vector and parametric form of a line's equation unique? Explain.

18) Is the slope-y-intercept form of a line's equation unique? Explain.